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We propose quantitative estimates of the indeterminacy of the prediction of the 

motion of a controlled system described by ordinary differential equations. 

1. The motion of a controlled system is specified by the equation 

dx / dt c F (t, x, u (t)), t fE I, I = (t : t,<tt(t*l (1.1) 

where IC = (x1,. . , , 5,) and u = (ul, . . . , u,) are vectors in real n- and r- 

dimensional spaces &m and R,’ , respectively, t is time, t, is a number, t, is either 

a number or the symbol 00. The norm I( zfl = maxi [Xi 1 is defined in space &“, The 

vectos I = pi (t),a t E I characterizes the state of the controlled system, u = u (t), 
t ES 1 is ar, input whose graph o = {(t, .u): u = u (t), t E I} belongs to an ad- 
missible set a = {o}, w It,, tj is the restriction of w onto I&, tl 0 1. 

Suppose ihat a solution of system (1. l), starting on a given open set Tro C: Rxn, ex- 

ists for all t E I at arbitrarily chosen o E QR; t (t) -q (t, t,, r,,, o it,, tl), ~F=I, 
is any surh solution, where 

2 (to) = ZQ E v, (L2> 

Let SS (x0) = {b, : [ b, - GJII < l/s a), 6 > 0 b e a ball which characterizes the 
regio:i of admissible initial states of system (1. I), if the possible measurement errors of 
the controtled system’s initial state are taken into account, At an instant t E 1 we 
consider the set S,, of states of system (1.1) on all possible motions of it (on the graphs 
of the solutions in 1 X a,*) starting from Ss (q,) for a specified o E Q. 1n other 

words. Sot = Qt, (Ss CGJf) is the image of the ball ss (t,), where @t is a mapping 
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from R,” into R,” considered as the transition operator from x,, to z, @*: z = cp{ * }, 
x0 E V, *whereas p1 > 0 is the diameter of set SPt, while the abbreviation T { * } 
is used here and elsewhere to denote the functional T (t, t,, x0, o It,,, tl). 
As a quantitative measure of the local divergence of the motions of system (1.1). star- 

ting in an arbitrarily small neighborhood of a given point 5 (t,) = x0, we consider 
the quantity 

h { - I = limbo (I&l / ISs (x0)1) (1.3) 

where I&tI and I& (x0) 1 are the volumes of sets SPt and SS (z,,) , respectively. With 

due regard to equality (1.5) from Cl], relation (1.3) can be written as 

h {s} =exp L {-} 

t II 

(1.4) 

Here L { - } is a functional on the motions of system (1. l), which in [l] is called the 

degree of lability of system (1. l), F (t, x, u (t)), (t, x) E di , is a continuously dif- 
ferentiable function of t, x for any o E 52, where 

A = {(t, x): x = cp {. }, t E I, 50 Ez v,, 0 E Q> 

The numerical value of the degree oi lability of system (1.1) can be obtained, obvi- 
ously, by integrating the system of equations with initial conditions 

q = F(t,cp{.},u(t)), q= 
n a i&Fi(f,~{-l, 4% t=I (1.6) 

cpWlt=t, = 20, U~)lf=f. = 0 

The set of ordered pairs (cp { - }, L {. }), on the one hand, determines a motion of sys- 

tem (1. l), on the other hand, characterizes the degree of indeterminacy. caused princip- 

ally by the unavoidable errors in the initial state of prediction of the motion of the con- 
trolled system by means of the system of differential equations (1.1). We assume that 

system (1.6) can be integrated by any available method (for example, numerically on 

a computer). 

9. The quality of performance of a controlled system is frequently judged by a scalar 
function y = Y (t), t E 1, called the output of system (1.1) and related to the state 

vector x = x (t), t E 1, by the finite equation 

y (0 = @ (t, J: (t)) (2.1) 

We assume that CD (t, x), (t, x) E A is a continuously differentiable function of 
t, z. In order to estimate the influence of the inaccuracy in specifying x (t,) = %J 
on the quantity y = y (t), t E I, we introduce a special quantitative measure. Todo 

this we first implement the following auxiliary constructions. 
We consider the ball Sg (x0) = {b, : )I b, - x,, 11 Q l/s&}, 6 > 0, simulating 

the errors in the initial state J: (t,) = x0 E V,, . We select the positive number 6 

from the condition ,!?a (q,) C V,,. Let 

0,: y = @ (t, cp (2, t,, 50, w kl, tl)), &I E vo (2.2) 
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be a mapping from space R, 92 into the one-dimensional space K,l= (y>, and let 

D, be the image of ball Ss (%a) in space .&It induced by the mapping O,, II, = 

0, (SS (x0)). It is evident that (2.2) can be treated as an n-dimensional hypersurface 
in the (n + 1) -dimensional space Rxn X fit,’ = {(z, $I)}, and Dt as a part of this 

hypersurfaee, corresponding to the region ss (x0). The area IDI\ of this hypersurface 

is 
(2.3) 

(2.4) 

if the quantity X { * } takes positive values. 
In order to estimate the influence of the inaccuracy in specifying the initial state 

IC (t,) L z+, of system (1.1) on the accuracy of determining the current vaiue of its 

output y = y (t), t tZ i , we consider the quantity 

o = o (t, ta, x0, 0 ItO, tl) = limti,, (ID,I / \SS (x0) I) (2.5) 

where jSa (x0) 1 is the volume of set Ss (x0) . By applying the theorem on the mean to 

&3), and next substituting the resulting relation into (2.5) we have o = vc/l -I- x2, 
x > 0 ; whence 

x =J&-1, CT%>1 (2.6) 
We denote 

1 {.} =lnx {*I (2.7) 

From (2.6) (2.7) follows the equivalence of the statements : 
a) o {.>-+co@ I {+}-+ 00, b) a{++~++~(++--~ 

Therefore, to estimate the accuracy of determining the output y = y (t), t E 1 we 
can use the quantity 2 { * } defined by (2.4), (2.7) instead of the quantitative measure 
IS { - }. This quantity is called the degree of lability of output y of system (1.1). The 

numerical values of 1 {. } can be found from formulas (2.41, (2.7) allowing for the fact 
that (pi (e} and &pi{-} / dzjo, i, j = 1,. . . , n, satisfy, according to Peano’s the- 
orem [Z], the system of equations 

q = F (t, cp (-}, u(t)) (2.8) 

Here drp {*} /a x0 
j = 1,. . ., 

is the ( n X n)-matrix of partial derivatives &pi (- } / dXjo+ i, 
n; dJ’ (a) ! 8~ is the ( n X n)-matrix of partial derivatives dFi (a ) / 

dXj considered on the solution f (t) = cp { * }, t E I, E, is the unit ( n x n)-matrix. 
We assume that system (2.8) can be integrated by any available method (for example, 
nurn~i~l~y on a ~mputer). 

For any t E I the quantity I (0) (and L (s}) is a continuous function of the initial 
state z (to) = x0 E V,. Consequently, if VO* is a compactum belonging to V,, then by 
numerical methods we can find initial points z,,l and z,2,belonging to this compactum, 
such that the quantity 1 {q) (or L {.}), considered at some given instant E E i, reaches 
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its greatest lower bound and least upper bound, respectively. 

8. The motion of an airplane at the straight-and-level flight, stabilized at a con- 
stant altitude H = H, by elevator deflections as necessary, is given ,>y the equations[3] 

m,dv, I dt = H cos (a - v) = Q, Y + R sin (cz - V) =L- C? (3.1) 

Here % = Q ftf is the airplane’s grouud speed (speed relative to the Earth’s surface) at 
instant t E f = it: 6 d 1 < &it R is the thrust of the engine, Q is the drag, Y is the 
iift, a is the airplane% angle of attack, v is the angle between the engine thrust direction 
and the fuselage axis. ma and G, are the airplane’s mass and gravity, respectively, c, and C, 
are drag and lift coefficients, taking positive values only, p. is the air density at altitude 
fi,, S is the wing area, v is the airplane’s air speed or flying speed (speed relative to 
the atmosphere, masses of which can move relative to the Earth’s surface). The ground 
and air speeds are related by the equation 

L‘* -= utw (3.2) 

where 1u is the wind speed in the horizontal direction ; w > 0 for a tail wind, w < 0 
for a head wind. 

The peculiarities of the airplane’s behavior in a turbulent atmosphere, caused by wind 
gust conditions, are of essential significance, By investigating the influence of a single 
horizontal wind gust on the motion of the airplane at the s~aight-and-level flight, we 
assume 

i 
a, t>o 

w== 0, t<o f3.3) 

where a is a number characterizing the wind gust intensity. Then, from (3.2). (3.3) it 
follows that du, i dt = dv / dt, t E I (3.4) 

For turbojet engines, at low flying speeds (for example, at the takeoff and landing 
operating conditions we can assume [3] 

K = hn - h,u (3.5) 

where h0 and ?L~ are positive numbers, The quantity ho is a function of the angle of 
rotation s of the engine thrust control lever. At low flying speeds when the compressibi- 
lity of the air can be neglected, the coefficients C, and C, satisfy the equation [3] 

c, = C,fi 4 BC$ (3.6) 

where c,, and B are positive coefficients practically independent of the flight Mach 
number. 

By examining Eqs. (3.1) - (3.6) simultaneously under the condition that at the air- 
plane’s straight-and-level flight the engine thrust component in the second equation of 
system (3.1) is negligibly small and that the angle (a - v) between the engine axis and 
the tangent to the flight path is not large, we obtain 

dv/dt=c(s)-dv-ev2-f/v2EP(.s, v), tEI (3.7) 
c is) = has / mo, d = hI / tl~~, e = p&,,S / 2m0, f = 2@?Go i p&S 

where g is the gravitational acceleration, For each fixed position s = S, of the thrust 
control lever the air speed v, of uniform straight flight can be found from the condition 
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p (s,, “,.J = 0. (3.8) 

Thus, the positive values of the roots of Eq. (3,8), having a physical meaning, depend 

upon the quantity sm. 
Examining the particular case when h,= 0 and s= soo, Painleve [4] was the first to show 

that Eq. (3.8) usually has two positive roots h 1 = (v,), and h, = (u& which determine 

two possible values of the speed of a uniform 
s~aight-and-level flight at a given altitude 

fi = HO, caused by the balancing of the engine 

thrust and the drag, and this balance can be 

Liapunov-stable or -unstable (the points h1 and 
Azin Fig. 1). 

Let us assume that the airplane, being for all 

t < 0 at a steady uniform straight-and-level 

flight in still air, suddenly enters a region of a 
horizontal airstream whose speed is determined 

300 400 SO0 ,. 
6oo u km,hr by relation (3.3). In this case w = 0 and u = u.+ 

for all t < 0 and 

Fig. 1 D (- 0) =$;rnP<; (11) = hi (3.9) 

and, as seen from (3.2) (3.3) and (3.9) we should assume 

u (0) = hi - a = uo (3.10) 

as the initial value of the air speed. From (3,lO) it follows that a perturbation of the 

airplane’s initial air speed can be caused not only by a gusty wind but also by a sharp 

intermittent change of the control lever position s , which in accordance with the equi- 
librium condition (3.8) leads to a change in the steady air speed hi = (v,)~. 

In order to estimate the sensitivity of the air speed v (t) = v (t, O,- uo) at the straight- 

and-level flight to perturbations of its initial speed v (0) = uo, we determine the degree 

of lability of Eq, (3.7) from formula (1.5) 
f 

L ft, 0, 00) = 1 (-d---2ev2+%) dl: 

0 
The quantity L (t, 0, IA,) characterizes the degree of indeterminacy, caused by pertur- 

bations of the initial air speed v (0) = uo in the variation in time, predicted by Eq.(3.7), 
of the air speed v(t) = v (& 0, %). Numerical values of L (t, 0, I~J can be found bysol- 
ving the problem, analogous to (1.6) 

dv i dt = c (s) - dv - ev2 - f f ~2 (3.11) 
dL / dt = -d - 2ev -+- 2f / 2, tEI 

v (0) = VII, .Jc (0, 0, ug) = 0 

In Figs, 2, 3 we have censtructed families of curves v = u (t, 0, vo), L = L (t, 0, v0), 

2 E 1, obtained by a numerical integration of Eqs. (3.11) on a computer for different 
values of the initial air speed u (0) = uo and for one fixed position S, of the engine 
thrust control lever. The calculations were made for an hypothetical transport aircraft 
with the parameters c (So) = 2.235 m/seca, d = 2*iOY3 set-1, e = 6.9.10-5 m-1, f = 
1.445*10”m3 / set *, corresponding to the takeoff - landing mode of the straight -and - 
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level flight, An analysis of the curves, shown in Fig. 3, of the variation of the degree 
of lability L = L (I, 0, vo) shows: the less is the airplane initial air speed v (0) i:0 
(Fig. 2) the greater is the value of the degree of lability L = L (t, 0, VO) for arbina- 
rily chosen t E I ; but this, in its own turn, signifies a large indeterminacy if the cur- 

rent value, predicted by Eq, (3. ‘7), of the air speed because of the perturbations of initial 

air speed v (0) = IQ. Consequently, as we see from (3,2), (3.3), (3.10) and Fig. 3, a sharp 

gust of tail wind must cause a particularly large divergence in the motions of Eq. (3.7). 

v, km/hr 

Fig. 2 Fig. 3 

If we know how the magnitude of the degree of lability I, = I, (t, 6, on) of Eqs. (3.7) 

varies on some selected motion y = v (t, o, I?“), t E I, then, obviously, we can answer 

the question on how a motion neighboring this motion behaves. For example, curve 5 
in Fig. 3, characterizing the time variation of the degree of lability of Eq. (3.7), shows 

that in Fig. 2 the motion neighboring curve 5 moves at first away from this curve (on the 
time interval where the degree of lability takes positive values) and then’approaches it 
(on the time interval where the degree of lability is negative), whereas the absolute va- 

lue of the degree of lability, considered at a given instant, characterizes the intensity of 
the course of all these processes. 

The authors adtnowledge the ~rti~i~~s of a seminar at Moscow State University on 

the qualitative theory of differential equations for discussing the paper. 
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